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Detailed calculations of the elastic, piezoelectric and pyroelectric properties of the fl phase of 
poly(vinylidene fluoride) are reported. The calculations are based on an empirical atomistic force field 
that uses the shell model of electronic polarization. Quasi-harmonic lattice dynamics is used to include the 
vibrational entropy in the calculation of the crystal free energy. The equilibrium crystal structure and 
polarization are determined as functions of temperature by minimization of the crystal free energy. The 
piezoelectric and pyroelectric responses are calculated by taking derivatives of the polarization with respect 
to strain and temperature, respectively. Changes in the unit cell volume dominate the piezoelectric and 
pyroelectric responses. Dipole oscillations make negligible contributions to the piezoelectric response. The 
primary pyroelectric response accounts for approximately 9% of the total pyroelectricity at 300 K. The 
temperature dependence of the piezoelectric stress coefficients is small. The temperature dependence of the 
piezoelectric strain coefficients is significant and correlates with the temperature dependence of the elastic 
compliance constants. Likewise, the temperature dependence of the pyroelectric response reflects that of the 
thermal expansion coefficients. Copyright © 1996 Elsevier Science Ltd. 
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INTRODUCTION 

Poly(vinylidene fluoride) in its/3 phase (fl-PVDF) is a 
1 polar crystal . Bulk, semi-crystaUine films of ~-PVDF 

are rendered polar through the process of poling in which 
the different crystalline regions are aligned along a 
common axis by the application of an electric field. 
Changes in the polarization with strain and temperature 
are described by the piezoelectric and pyroelectric 
coefficients, respectively ~. The large piezoelectric and 
pyroelectric coefficients of ~-PVDF films coupled with 
their mechanical properties have made these films a 
successful commercial material 2. The piezoelectric and 
pyroelectric properties of semi-crystalline films of fl- 
PVDF have been well characterized. However, the 
fundamental molecular mechanisms that give rise to 
these responses are still unclear 3'a. This lack of resolution 
is due to the difficulty in directly probing the crystalline 
phase of semi-crystalline f i lms--a frequently encoun- 
tered problem in polymer physics. Molecular simulations 
can be useful for such problems as they can focus directly 
on the crystalline phase of the semi-crystalline film and 
provide details at the molecular level. 

In polar crystals the piezoelectric response is a result of 
the coupling between the dielectric and the mechanical 
responses of the crystal. Likewise, the pyroelectric 

t To whom correspondence should be addressed 

response includes a contribution from the coupling of 
the piezoelectric and thermal expansion coefficients 5. A 
complete study needs to address the elastic responses, the 
thermal expansion and the polarization of the crystal in a 
consistent manner. 

Previous attempts at calculating the piezoelectric 
and pyroelectric properties of/3-PVDF fall into three 
general categories: (i) models based on simple continuum 

6 dielectric theory ; (ii) models based on the explicit lattice 
summations of idealized dipolesT-ll; and (iii) models 

12 14 based on molecular simulations - . Models in cate- 
gories (i) and (ii) require additional approximations of 
the crystal elastic properties and the thermal expansion 
coefficients whereas models in category (iii) can, in 
principle, be used to calculate these properties as well. 

In a previous publication, referred to hereafter as 
Paper I, we presented a consistent model of the crystal 
polarization and local electric field in ~-PVDF based on 
the minimum free energy crystal structure calculated 
using consistent quasi-harmonic lattice dynamics 
(CLD) ts. In this paper, we extend this method to the 
determination of the piezoelectric and pyroelectric 
properties. This approach has several distinct advan- 
tages. First, the combination of an atomic-level descrip- 
tion of the repeat unit electrostatics with the use of Ewald 
sums allows for a more thorough representation of  the 
internal electric field effects in the crystal. Previous 
attempts at quantifying these effects were based on much 
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simpler representations of the repeat unit charge distri- 
bution, with the results being very sensitive to the details 
of the representation 7-11. Second, this technique utilizes 
an empirical potential energy expression that includes 
the shell model of electronic polarization 14. The use of 
this model allows for explicit inclusion of electronic 
polarization at the molecular level. Third, the inclusion 
of vibrational entropy in the crystal free energy expres- 
sion allows for a direct determination of the crystal 
structure, polarization, dielectric constant, elastic stiff- 
ness and compliance constants, and thermal expansion 
coefficients as functions of temperature. All of these 
quantities play a part in the analysis of the piezoelectric 
and pyroelectric responses of 13-PVDF. Finally, the 
normal-mode frequencies and eigenvectors give informa- 
tion about atomic motions in the crystal which can be 
utilized to include the effects of dipole oscillations in 
calculating the piezoelectric and pyroelectric properties 
of 13-PVDF. The accuracy of this approach is limited by 
the parameterization of the empirical force field and the 
validity of the harmonic approximation. 

THEORY 

~-PVDF displays a non-zero polarization parallel to the 
b crystal axis; the components along a and e are zero due 
to the symmetry of the crystal. To maintain consistency 
with the literature on J%PVDF, we label c as the 1 axis, a 
as the 2 axis and b as the 3 axis, as shown in Figure 1. 
We report only the orthogonal tensile properties of the 
jT-PVDF orthorhombic unit cell. In this work we use i 
and j  to represent the principle indices in Voigt notation, 
and k and I to represent the principle Cartesian indices, 
x ,y , z .  The Einstein summation convention, which 
implies summation over repeated indices, is also utilized. 

Model of  crystal polarization 
The polarization is defined as the dipole moment 

density of the crystal. In ~-PVDF there are two identical 
chemical repeat units CH2CF 2 per unit cell. Each repeat 
unit is aligned in the unit cell such that the repeat unit 
dipole is parallel to the 3 axis. Because of 
this arrangement, the polarization and repeat unit 
dipole can be represented as scalars and the polarization 
is written as 

2/Z 
P3 = --~ 1) 

Direction / / 1 ~ ~  

Figure 1 Relationship between film coordinates and unit cell 
coordinates in ¢7-PVDF 

where # is the magnitude of the repeat unit dipole 
moment parallel to the 3 axis and V is the unit cell 
volume. 

In Paper I we defined the total repeat unit dipole in the 
crystal as 

/z =/zSC(cos ~) + A/z (2) 

where/zsc is the dipole of each repeat unit of the single 
chain in vacuum, A# is the change in repeat unit dipole 
in going from the single chain in vacuum to the packed 
crystal, and (cos ~) is the attenuation of the repeat unit 
dipole due to thermal oscillations. A/Z is given by 

zx/z = ~E~oc (3) 

where c~ is the repeat unit polarizability along 3 and Eloc 
is the local electric field along 3, which arises--in the 
absence of an applied field--from the dipoles on the 
neighbouring chains in the crystal. (Contributions to the 
local electric field due to dipoles on the same chain are 
also present, but are not included in Eio~. These intra- 
molecular contributions are already accounted for in 
/zsc.) (cos ~) is the ensemble averaged projection of the 
repeat unit dipole in the crystal along the 3 axis. In 
deriving equation (2) we made the approximation that 
only the single chain dipole is attenuated by thermal 
oscillations. The force field used in our calculations was 
based on the shell model which included both atomic and 
electronic polarization effects in determining/zsc, A/Z and 
a. From equation (2) the crystal polarization parallel to 
the 3 axis is 

2 
P3 = ~ (/zsc (cos cp) + A/z) (4) 

Elastic, piezoelectric and pyroelectric responses 
In the case of polar crystals such as 13-PVDF, the 

elastic and dielectric properties are coupled. If we take 
stress, aj, temperature, T, and applied electric field, Ek as 
the independent variables, then the dependent quantities 
are strain, el, and polarization, P~, 

~, = sij~j + ~ iT  + d?~Ek (5) 

P; = dkjO[i + Sk T + x~#EI (6) 

where Sij are the elastic compliance constants, cy i are the 
linear thermal expansion coefficients, dkj and dCk are the 
direct and converse piezoelectric strain coefficients, 
respectively, Pk are the pyroelectric coefficients, and Xkt 
are the dielectric susceptibility constants. The super- 
script, o, on Pk,Pk and Xkt indicate that these quantities 
are defined for conditions of constant stress. If instead we 
take e j, T and E k as the independent variables, then the 
dependent quantities are cr i and P~ 

cri = Cijej - f i T  + gCkEk (7) 
P~ = gkj~.j + p~T + X~klEI (8) 

where Cij are the elastic stiffness constants, - f i  are the 
thermal stress coefficients, and gkj and gC k are the direct 
and converse piezoelectric stress coefficients, respec- 
tively. The superscript, e, on Pk,Pk and Xkt indicate 
that these quantities are now defined for conditions of 
constant strain. 

The coefficients appearing in equations (5)-(8) are 
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defined by the partial derivatives of the dependent 
variables with respect to the appropriate independent 
variables. In this way, from equation (5), the elastic 
compliance constants are defined as 

Sij - (9) 
T,E 

The linear and volume thermal expansion coefficients are 
defined as 

( & i )  l (Oai )  
c~ i_= ~-~ , , e= - -  (10) 

ai \OT ] ~r,e 

I ( O V )  (11) 

where ai are the lattice parameters. For an orthorhombic 
unit cell, av is given as 

av = ch +a2  +a3  (12) 

From equations (5) and (6), the converse and direct 
piezoelectric strain coefficients, d~ and d3i, are defined as 

( & i )  (13) dP3 - \ O E g ]  

{OP3"~ (14) 
d3i ~ ~ ~ i  / T,E 

and from equations (7) and (8), the converse and direct 
piezoelectric stress coefficients, g~3 and g3i, are defined as 

gi3 ~ \OE3 J T,e 

(OP3) (16) g3i J 

The direct piezoelectric strain and stress coefficients are 
related through the elastic compliance constants, 

dki = Sijgkj (17) 

The pyroelectric coefficient at constant strain, p~, 
describes a change in polarization with temperature 
when the sample is effectively clamped. From equation 
(8), p~ is defined as 

(OP3"] (18) 
P ;  - \ - b - T / , , E  

If the sample is instead allowed to change its shape and 
volume with changes in temperature, then the pyre- 
electric response is given by p~ which from equation (6) 
is defined as 

(OP3~ (19) =- 

p~ can be written as a sum of p~ and the product of the 
direct piezoelectric stress coefficient, g3i, and the thermal 
strain given by the thermal expansion 5, 

p~ = p~ + g3io~i (20) 

The total pyroelectric response at constant stress, p~, is 
the sum of the primary pyroelectric response, given by p~, 
and the secondary pyroelectric response, g3io% 

Because of the symmetry of the unit cell, only the 
polarization along the 3 axis is non-zero in g-PVDF. In 

this work, we do not consider any variations that break 
this symmetry; in evaluating the piezoelectric and pyre- 
electric responses we consider changes in polarization 
along the 3 axis only. Subscripts on partial derivatives 
are also omitted unless required for clarity. We obtain 
an expression for d3i from our polarization model by 
evaluating equation (14) using equation (4) 

2# sc (O(cos~).'~ 2 (OA#'~ 
d3 i=~- -~  Oo.i j + - ~ \ O ~ T i j - P 3 Z S i j  (21) 

J 

The g3i are, likewise, obtained from our polarization 
model by evaluating equation (16) and equation (4) 

2# sc (O(cos~). + - P3 (22) 
g3i = - - r -  I k O~ i V \ Oqei / 

The pyroelectric coefficient at constant strain, p~ given in 
equation (18), is expressed in the polarization model as 

p~ = ~2#sc ( 0 ( - ~  ~).) ~ (23) 

In the quasi-harmonic approximation, the term 
(OA#/OT) is zero at constant strain. From equation 
(20) the pyroelectric coefficient at constant stress, p~, is 

2# sc (0(cos @'~ 
P~ = --V- \ OT e I ~+ °~ig3i (24) 

COMPUTATIONS 

In this work, the crystal polarization and its derivatives 
with temperature and strain are calculated using con- 
sistent quasi-harmonic lattice dynamics (CLD). This 
technique allows for the inclusion of the vibrational 
entropy in the calculation of the crystal free energy. CLD 
is based on a Taylor series expansion of the crystal 
potential energy given, in this work, by an empirical 
force field. In the harmonic approximation, the Taylor 
series is truncated after the second order term and the 
resulting differential equations have harmonic solutions. 
The dynamical equations can be transformed into 
normal-mode coordinates and the equations of motion 
then become those of a collection of non-interacting one- 
dimensional harmonic oscillators for which analytical 
expressions for both the classical and quantum mechan- 
ical partition functions are available. The Helmholtz 
vibrational free energy of the crystal, Avib, is then 
calculated directly from the partition function. Quasi- 
harmonic lattice dynamics includes the anharmonicity 
due to changes in normal-mode frequency with lattice 
constants. The techniques of lattice dynamics are well 
developed and the reader is referred to several sources for 
further details 16'17. A detailed explanation of CLD and 
its application to the calculation of the minimum free 
energy crystal structure and properties of poly(ethylene) 
has recently been published 18. 

We use modified versions of the MSXX and MSXXS 
force fields developed by Karasawa and Goddard 14 
(KG) which we denote MSXX* and MSXXS*. These 
force fields were used as reported, except for the fluorine 
van der Waals parameters. These were taken from 
crystalline F219 and are given in Table 1, along with 
those originally reported by KG. The revised van der 
Waals parameters for fluorine were required to maintain 

POLYMER Volume 37 Number 22 1996 5091 



Properties of fl-poly(vinyfidene fluoride): J. D. Carbeck and G. C. Rutledge 

Table 1 Fluorine van der Waals parameters. 

~v 
Um w = ~ I6 exp(C(l - p)) - ~p ~]; p = R/R,. 

Rv (A-) ev (kcal mol 1) 

This work 3.2000 0.0600 14 
KG" 3.5380 0.0211 16 

" Ref. 14 

calculated as described in the Appendix, each with 
respect to strain. From the piezoelectric stress coefficients 
and the elastic compliance constants, we determined the 
direct piezoelectric strain coefficients, d3i, using equation 
(17). The constant strain pyroelectric coefficient, p~ as 
expressed in equation (24), was calculated from the 
thermal expansion coefficients, piezoelectric stress coeffi- 
cients and the derivative of (cos~)--calculated as 
described in the Appendix--with respect to temperature. 

accurate estimations of the equilibrium lattice constants 
and vibrational stability in CLD. These modifications 
are described in further detail in Paper I. The MSXX* 
and MSXXS* force field differ in that the MSXXS* force 
field employs the shell model of electronic polarization 
while MSXX* employs the standard fixed partial atomic 
charge model. The Ewald summation method 2° is used to 
calculate the Coulombic and dispersion interactions with 
all sums carried out to an accuracy of 0.01 kcalmo1-1. 
Analytical second derivatives are used to determine the 
normal mode frequencies. The normal-mode frequencies 
are wave vector dependent and Avi b is obtained by 
integrating over the first Brillouin zone using Gauss-  
Legendre quadrature on a 4 x 4 x 4 mesh. The total 
Gibbs free energy is then calculated from 

G(T,o ' )  = U(a) + Avib(T,a) - V~"~criei (25) 
/ . j  

where U(a) is the potential energy given by the force field 
for the set of lattice constants, a. 

By minimizing G(T,~r) with respect to the lattice 
constants, a, and positions of all atoms and shells within 
the unit cell, we determined the equilibrium free energy 
unit cell structure at each temperature (at zero applied 
stress). From this structure, the temperature dependent 
crystal polarization and repeat unit dipole were obtained 
directly. Values for (cos~;) were obtained from the 
normal mode frequencies and eigenvectors of the B2 
rotational lattice mode at each temperature, as described 
in the Appendix. For the repeat unit dipole moment of 
the single chain in vacuum we used results from 
calculations of a single infinite chain with an axial 
repeat distance of 2.56 A, reported in Paper I. 

Thermal expansion coefficients were estimated from 
analytical derivatives of 4th-order polynomials fit to 
the lattice constants versus temperature between 0 and 
400K. Elastic constants and piezoelectric coefficients 
were determined from free energy minimizations at fixed 
strains of 0.25% about the equilibrium lattice constants 
at each temperature. We considered only tensile and 
compressive strains (i.e. i, j = 1,2, 3) for a total of 24 
additional free energy minimizations at each tempera- 
ture. The elastic stiffness constants, Cij ( i , j  = 1,2,3) 
were then estimated numerically from the second 
derivatives of the crystal Helmholtz free energy, 
A(T,  a), with respect to strain. The elastic compliance 
constants, Sij (i, j = 1,2, 3), were determined by inver- 
sion of the elastic stiffness tensor. For the orthorhombic 
lattice, C is block diagonal and it is not necessary to 
consider shear constants in order to obtain the desired 
values for Sij. The direct piezoelectric stress coefficients, 
g3i( i= 1,2,3) as expressed in equation (22), were 
determined from the derivatives of A/t, which was 
estimated numerically, and of (cos q o), which was 

RESULTS AND DISCUSSION 

Thermal expansion and elasticity 
The lattice constants and thermal expansion coefficients 
of 3-PVDF are provided in Table 2 as a function of 
temperature calculated using CLD and the MSXX* 
force field. The lattice constants are essentially 
unchanged with the use of the MSXXS* force field and 
are used as the equilibrium lattice constants throughout 
this work. c~2 and c~ 3 are positive and increase with 
temperature, oz I is negative and an order of magnitude 
smaller than c~ 2 and c~3. Previous application of CLD to 
the calculation of the thermal expansion of poly(ethy- 
lene) gave results in very good agreement with experi- 
ment ~s. We are not aware of any experimental data for 
the thermal expansion of/3-PVDF for comparison here. 
The negative axial thermal expansion, c~ 1, is similar to 
that observed in poly(ethylene) and arises in part from 
thermally induced compressive stresses along the chain 
axis, and Poisson coupling to the tensile thermal stresses 
lateral to the chain axis. 

In Table 2 we report the elastic stiffness constants 
calculated using the MSXX* force field and numerical 
derivatives of the crystal Helmholtz free energy, 

Cij = -~ ~OeiOF_j / = -~ ~OeiOcjj 4- ~ ~06_i06j / (26) 

Similar results where obtained with the MSXXS* force 
field. In Table 3 we indicate the potential energy, U, and 
vibrational free energy, Avib, contributions to the elastic 
stiffness constants at 300 K according to equation (26). 
The elastic tensor demonstrates the characteristic aniso- 
tropy of extended chain polymer crystals, with the 
stiffness along the axial direction, 1, an order of 
magnitude larger than the values transverse to the 
chain axis, 2 and 3. Comparing the first and second 
columns of Table 3 indicates that the inclusion of the 
vibrational free energy also results in a decrease in the 
elastic stiffness along the axial direction and an increase 
in stiffness transverse to the chain. This effect is 
dependent on temperature as shown in Table 2. Com- 
parison of the potential energy contributions reported in 
Table 3 to the values reported by Karasawa and 
Goddard 14 using the original MSXX force field indicates 
that the primary effect of the modified fluorine van der 
Waals parameters is to reduce the anisotropy between 
C22 and C33 in the ab plane. As seen in Table 3, the 
introduction of the vibrational free energy contribution 
to Ci; serves to further attenuate this anisotropy. These 
results are consistent with observations made by Tashiro 
et al. 12 that, based on X-ray diffraction measurements, 
there is little anisotropy in the modulus of/3-PVDF in 
the ab plane normal to the chain axis. 

5092 POLYMER Volume 37 Number 22 1996 



Properties of fl-poly(vinylidene fluoride): J, D. Carbeck and G. C. Rutledge 

Table 2 Calculated properties of  fl-PVDF at several temperatures 

0 K 100 K 200 K 300 K 400 K 

Polarization (Cm -2) P3 0.182 0.180 0.176 0.172 0. ! 66 

Unit cell parameters (,~) a 8.385 8.414 8.477 8.552 8.652 
b 4.611 4.624 4.651 4.683 4.721 
c 2.552 2.551 2,550 2.549 2.547 

and unit cell volume (,~3) V 98.7 99.2 100.5 102.1 104.0 

Thermal expansion ~1 0.00 -0.25 -0.33 -0.38 -0.47 
coefficients (10 -5 K - l )  c~ 2 0.00 3.34 5.43 6.56 7.75 

c~ 3 0.00 2.81 4.32 5.13 5.84 

Elastic stiffness Cll 293 290 285 276 265 
constants (GPa) ('22 31.0 28.9 28.2 24.5 20.5 

C33 32.9 31.5 29.1 26.1 22.1 
Ct2 4.7 5.9 6.5 7.6 9.4 
C13 8.5 8.6 8.7 9.1 10.1 
C23 2.9 2.6 1.9 1.2 -2.1 

Pyroelectric coefficient p~ 0.00 - 1.91 -2.77 -3.26 -3.77 
(10 -5 Cm -2 K - l )  

Direct piezoelectric stress g3~ -0.09 -0,09 -0.08 -0.08 -0.08 
coefficients (C m 2) g32 --0.26 --0.27 --0.26 --0.26 --0.27 

g33 --0.25 --0.25 --0.25 --0.24 --0.24 

d31 0.03 0.09 0.15 0.28 0.70 
d32 -7.92 -8 .57 -8.89 - 10.25 - 14.58 
d33 -6.87 -7.22 -7.94 -9.06 - 12.71 

Direct piezoelectric strain 
coefficients (pC N -1 ) 

Table 3 Contributions to the elastic stiffness tensor of fl-PVDF (GPa) 
at 300 K 

v ~,o~, ~ j j  Msxx. 

Table 4 Contributions to the direct piezoelectric stress coefficient, g3i 
(C m-l ) ,  at 300 K 

C]l 281 
C22 17.0 
C33 22.1 
Ci2 2.4 
C13 4.6 
C23 1.6 

Piezoelectr ic  stress coefficients, g3i 
Values for the direct piezoelectric stress coefficients, 

g3i, i = 1, 2, 3, computed from equation (22) are reported 
in Table 2. All three of the coefficients are negative, 
indicating a decrease in polarization with strain. None of 
the coefficients are significantly affected by temperature. 
Like the elastic constants, there is significant anisotropy 
in the piezoelectric stress coefficients, with the coefficients 
transverse to the chain axis, g32 and g33, approximately 
three times as large as g3t. 

In equation (22) g3i is shown to be directly propor- 
tional to the negative of the polarization, -P3. This term 
arises from the partial derivative of the reciprocal volume 
with strain (0(1/V)/&i = - 1 / V ) .  If the only mechanism 
responsible for the piezeoelectric stress response was a 
change in volume with strain, then the three principle 
coeffÉcients would be identical and equal to the negative 
of the polarization. Anisotropy among the g3i coefficients 
arises from changes in the repeat unit dipole with strain. 
At 300 K, we find a value for the total polarization, P3 of 

2 2 0.172 C m -  and a value of g33 of-0 .25  C m- , indicating 
a contribution from the volume effect of approximately 
70%. Purvis and Taylor, using a point dipole model, 
found a value for P3 of 0.086 and g33 of -0.28, indicating 
a contribution of the volume effect of only 30%. Using 
a fixed charge model, A1-Jishi and Taylor predicted a 

y \o~,o~j/~,sx×" v \ - - - g ~ , ;  v \ o~, j 

1 0.00 0.09 
-5 .0  2 -0.02 -0.07 

8.0 3 0.00 -0.07 
4.0 
5.2 
4.5 

-o.4 value for P3 of 0.127 and g33 of-0 .44,  still indicating a 
contribution of the volume effect of 30%. These 
variations demonstrate that the crystal polarization as 
well as the piezoelectric stress coefficients are sensitive to 
the details of the repeat unit charge distribution. 

As indicated in equation (22), changes in the repeat 
unit dipole with strain arise from two sources: changes in 
induced moment, and changes in amplitude of dipole 
oscillation. These contributions at 300 K are summarized 
in Table 4. The observed anisotropy arises primarily 
from changes in the induced moment, with much smaller 
effects due to dipole oscillations. The only non-zero 
contribution from changes in the dipole oscillations 
arises when strains are applied along 2. Positive strains 
along 2 move the chains farther apart along the a axis, 
allowing for a greater amplitude, ~, of dipole oscillations 
and a concomitant decrease in (cos ~). For g32 and g33 
changes in the induced moment results in a 30% increase 
over that associated with the equilibrium polarization; 
the induced dipole moment is reduced through the 
applications of positive strains along 2 and 3. This is in 
contrast to strain applied along 1 where the induced 
dipole increases with positive strain and g31 is reduced by 
50% from its value assuming only expansion of volume 
with strain. 

As discussed in Paper I, there are two contributions to 
the local electric field acting on a repeat unit dipole in the 
crystal. The first is the electric field arising from the other 
dipoles on the same chain. This field is opposite in 
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direction to the repeat unit dipole and therefore acts to 
reduce or depolarize the repeat unit dipole. The second 14 
is the electric field arising from the dipoles on the 
neighbouring chains. This field is parallel to the repeat 12 
unit dipole and acts to increase or polarize the repeat unit 1° ] 
dipole. These two contributions to the local electric field 
are also manifested in the piezoelectric stress response. 
Positive strains along 2 and 3 move the chains farther z g 
apart, reducing the magnitude of the polarizing con- 
tribution to the local electric field and reducing the repeat & 6 

e~ 
unit dipole. Positive strains along 1 move the dipoles .~ 
along the chain farther apart reducing the magnitude of ' 4 
the depolarizing contribution to the local electric field 
and increasing the repeat unit dipole. 2 

Piezoelectric strain coefficients, d3i 
e 

Values for the direct piezoelectric strain coefficients, 
d3i , i = 1,2, 3, computed using equation (17), are listed in 
Table 2. In Figures 2 - 4  we give the relative contributions -2 
to d3i expressed as the product of g3j and Sij. The results 0 
for d3i a r e  similar to those for g3i in that there is 
significant anisotropy, with the coefficients transverse to 
the chain much larger in magnitude and opposite in sign 
relative to the axial coefficient. Unlike the values of g3i, 
however, the values of d3i are sensitive to temperature. 
This effect is due almost entirely to changes in the 
compliance with temperature, d31, although significantly 14 
smaller than d32 and d33, has the greatest sensitivity to 
temperature, increasing by more than a factor of two 12 
between 0 and 400K. This change is due to the 
increasingly negative off diagonal terms of the compli- 10 
ance tensor, $21 and $31. d32 and d33 a r e  dominated by 
the products g32S22 and g33S33, respectively. The =" 
temperature dependencies of d32 and d33 likewise reflects z 8~ 
those of $22 and $33; each increases by more than 50% ;s 
between 0 and 400 K. 

The piezoelectric properties of semi-crystalline /3- 
PVDF films have been extensively characterized. 4 
Kepler and Anderson report typical values of 

0 . 5 0  , , , I 1 I I I 
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Figure 2 Direct piezoelectric strain coefficient, d3j (pC N ~), as a 
function of temperature. [3, g31SI1 ; O, g32S21 ; A, g33S31 ; O. total 
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Figure 3 Direct piezoelectric strain coefficient, d32 (pC N-I), as a 
function of temperature. [3, g31 S12; O, g32S22; A, g33S32; O, total 
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Figure 4 Direct piezoelectric strain coefficient, d33 (pC N-l) ,  as a 
function of temperature. [3, g31 S13; O, g32S23; A, g33S33; 0,  total 

d31 = 21.4, d32 = 2.3 and d33 = - 3 1 .5 p CN -l .  A value 
for d33 of -20  + 5 pC N I for the crystalline phase of/3- 
PVDF based on X-ray diffraction has been reported 12. 
Our calculated value for d33 at 300 K is a factor of two 
smaller. The magnitude of this value depends directly on 
the transverse elastic compliance constant, $33 , which is 
in turn dependent on our choice of van der Waals 
parameters, as discussed previously. To further examine 
the effects of the van der Waals parameterization, we 
calculated $33 using both the MSXX* and the original 
MSXX force fields. Using the MSXX* force field and 

MSXX neglecting the vibrational free energy results in S33 * = 
4.5 x 10 -11 Pa -1, giving a value of g33 SMsxX* = -11.4 
pC N -z. Including the vibrational free energy gives a 
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smaller value of g33 SMSXX' = -9.5 pC N -1. Using the 
original MSXX force field and neglecting the vibrational 

S~ sxx free energy results in = 8.3 x 10 -11 Pa -1, giving a 
value of g33 SMsxx = -21.7 pC N -1 in good agreement 
with experiment. Although the inclusion of the vibra- 
tional free energy reduces the calculated value of d33 
somewhat, the choice of van der Waals parameters has 
much more significant effect, varying d33 by a factor of 
two. 

Direct vs converse piezoelectricity 
In highly deformable crystals with finite polarization in 
the absence of applied stress, Anderson and Kepler 22 
demonstrated that the correct Maxwell's relation 
between the direct and converse piezoelectric strain 
coefficients is 

(OPk~ Pk (Omk~ (O£i~ 
+ - -  = (27) 

017i ] T,E Ak ~X O0"i ] T,E koek]  T,a 

where Ak is the unit cell area normal to the kth cartesian 
axis and Pk is the polarization at zero applied stress. For 
an orthorhombic crystal like/3-PVDF, this relation can 
be written as 

3 

dki : diCk -- Pk Z Sfi (28)  
j =  l ( j #k )  

The difference in the direct and converse coefficients 
is seen to arise from the product of the unit cell 
polarization at zero applied stress and the elastic 
compliance. In Table 5 we report the direct and converse 
piezoelectric strain coefficients. The difference between 
the direct and converse coefficients is most pronounced 
for d32. This difference is primarily a result of the term 
P3S22. The converse coefficients d3~2 and dr3 also 
demonstrate greater anisotropy than the direct coeffi- 
dents d32 and d33. These results further demonstrate the 
importance of elasticity in understanding the piezo- 
electric response of 3-PVDF. 

Pyroelectricity, p~ 
The primary and secondary contributions to the 

pyroelectric coefficient, p~, as a function of temperature 
are given in Table 6. The primary and secondary 

Table 5 Direct and converse piezoelectric strain coefficients, (pC N 1) 

i d3i PSil PSn ~i 

1 0.28 0.64 -0.19 0.73 
2 -10.25 -0.19 6.95 -3.49 
3 -9.06 -0.21 -0 .24 -9.50 

Table 6 Primary and secondary contributions to the pyroelectric 
coefficient, P3 × 105 (C m z K q ) ,  at several temperatures 

r 2.  
V k ~ ' - O T - - J  ¢ ° q g 3 1  °~2g32 ° ' 3 9 3 3  P 3  

I I I I I I I 

.--- 3 

~. 2 

O 

e~ 
i 

1 

O 5 0  100  150  2 0 0  2 5 0  300 350 400 

T (K) 

Figure 5 The constant stress pyroelectric response as a function of  
temperature. [3, primary pyroelectricity; O, secondary pyroelectricity; 
,O, total 

pyroelectric coefficients are also plotted in Figure 5 as a 
function of temperature. In contrast to the piezoelectric 
coefficients, the pyroelectric response goes to zero at 0 K. 
Above 50K, the primary pyroelectric response is 
approximately constant. The negative values of the 
primary contribution to p~ shown in column 1 of Table 
6 indicate an increase in the amplitude of dipole 
oscillation, ~, with temperature. The secondary response 
is sensitive to temperature. This temperature dependence 
reflects that of the thermal expansion coefficients. At 
100K, the primary response accounts for 17% of the 
total response. This contribution drops to 9% of the 
total response at 300 K. The experimentally determined 
value for p~ for semi-crystalline uniaxially oriented films 
• 10-5 Cm-2 K-1 23. However, one-third to is -2.75 × 
one-half of this measured value is due to reversible 
changes in the degree of order in the semi-crystalline 
film 3. Because the average degree of crystallinity is 
also about 50%, -2.75 × 10 -5 Cm -2 K -1 is probably a 
reasonable estimate of p~ for the crystalline phase. This 
is in reasonable agreement with our calculated value of 

5 2 1 -3.26 × 10- Cm-  K - .  Our calculation of the con- 
tribution of primary pyroelectricity is also in agreement 
with the reasoning of Kepler and Anderson that primary 
pyroelectricity can contribute no more than 15% of the 
total 23. 

0 0.00 0.00 0.00 0.00 0.00 
100 -0.34 0.02 -0.89 -0.70 -1.91 
200 -0.29 0.03 - 1.44 - 1.07 -2.77 
300 -0.30 0.03 -1.73 -1.26 -3.26 
400 -0.33 0.04 -2.06 -1.42 -3.77 

CONCLUSIONS 

The results of our calculations on/3-PVDF demonstrate 
that the piezoelectric stress tensor is highly anisotropic 
with g31 a factor of three less than g32 and g33. Dipole 
oscillations contribute little to the piezoelectric stress 
coefficients and the observed anisotropy is, therefore, 
due to changes in the induced moment with strain. 
Changes in induced moment with strain are, in turn, due 
to changes in the local electric field. 

The piezoelectric stress coefficients show little 
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variation with temperature. The direct piezoelectric 
strain tensor also shows anisotropy, with d31 smaller by 
an order of magnitude and opposite in sign to d32 and 
d33. The temperature dependencies of d3g are significant 
and are determined by the temperature dependence of 
the elastic compliance constants. The predicted values 
also reflect the sensitivity of the elastic compliance 
constants to small differences in the van der Waals 
parameterization. The Maxwell relation between the 
direct and converse piezoelectric strain coefficients given 
by Kepler and Anderson is confirmed with differences of 
as much as a factor of three found. Finally, the calculated 
pyroelectric response, P3, of the crystal is comparable to 
that reported for semi-crystalline films. Primary pyro- 
electricity accounts for about 9% of the total response of 
the crystal at 300K. The temperature dependence of 
secondary pyroelectricity is significant and determined 
by that of the thermal expansion coefficients. 

ACKNOWLEDGEMENTS 

The authors would like to acknowledge D. J. Lacks 
for his helpful comments and are grateful to the AT&T 
Foundation and to the National Science Foundation 
(CTS 9457111) for financial support of this work. 

REFERENCES 

1 Lovinger, A. 'Developments in Crystalline Polymers', Vol. 1, 
Applied Sciences, London, 1981 

2 Wang, T., Herbert, J. and Glass, A. 'The Applications of 
Ferroelectric Polymers', Blackie, Glasgow, 1988 

3 Kepler, R. and Anderson, R. Adv. Phys. 1992, 41, 1 
4 Capron, B. and Hess, D. IEEE Trans. 1986, UFFC-33, 33 
5 Nye, J. 'Physical Properties of Crystals', Oxford Press, Oxford, 

1985 
6 Broadhurst, M., Davis, J., McKinney, G. T. and Collins, R. 

J. Appl. Phys. 1978, 49, 4992 
7 Purvis, C. and Taylor, P. Phys. Rev. B 1982, 26, 4547 
8 Purvis, C. and Taylor, P. Phys. Rev. B 1982, 26, 4564 
9 Purvis, C. and Taylor, P. J. Appl. Phys. 1983, 54, 1021 

10 A1-Jishi, R. and Taylor, P. J. Appl. Phys. 1985, 57, 897 
11 Al-Jishi, R. and Taylor, P. J. Appl. Phys. 1985, 57, 902 
12 Tashiro, K., Kobayashi, M., Tadokoro, H. and Fukada, E. 

Macromolecules 1980, 13, 691 
13 Tashiro, K., Tadokoro, H. and Kobayashi, M. Ferroelectries 

1981, 32, 167 
14 Karasawa, N. and Goddard, W. Macromolecules 1992, 25, 7268 

15 Carbeck, J., Lacks, D. and Rutledge, G. J. Chem. Phys., 1995, 
103(23), 10347 

16 Born, M. and Huang, K. 'Dynamical Theory of Crystal 
Lattices', Oxford Press, Oxford, 1954 

17 Venkataraman, G., Feldkamp, L. and Sahni, V. 'Dynamics of 
Perfect Crystals', MIT Press, Cambridge, 1975 

18 Lacks, D. and Rutledge, G. J. Phys. Chem. 1994, 98, 1222 
19 Murthy, C., Singer, K. and McDonald, I. in 'Advances in 

Chemistry Series', Vol. 204, American Chemical Society, 
Washington DC., 1983, Chap. 9 

20 Karasawa, N. and Goddard, W. J. Phys. Chem. 1989, 93, 7320 
21 Kepler, R. and Anderson, R. J. Appl. Phys. 1978, 49, 4490 
22 Andersen, R. and Kepler, R. Ferroeleetrics 1981, 32, 13 
23 Kepler, R. and Anderson, R. Mol. Crvst. Liq. Cryst. 1984,106,345 

APPENDIX: CALCULATION OF THE 
TEMPERATURE AND STRAIN DERIVATIVES 
OF (cos ~) 

In a previous publication 15 we compared our CLD 
calculations to molecular dynamics simulations and 
demonstrated that the root-mean-squared amplitude of 
oscillation, ~RMS, of the repeat unit dipole could be 
estimated accurately up to 300 K by assuming harmonic 
oscillation 

~-1  B~ ~RMS /~:o2 V Lv~b/I (A1) 

where wB: is the frequency of the rotational lattice mode 
with B 2 symmetry. I =  1.31 × 10-45kgm -2 is the 
moment of inertia of a repeat unit of fl-PVDF rotating 
about an axis parallel to the c axis and passing through 
the chain centre of mass. 

For temperatures less than the vibrational tempera- 
ture, defined as hwB2/ks, quantum mechanical effects 
become significant. For ~a2 the vibrational temperature 
is approximately 130 K. Because we are interested in the 
crystal properties from OK, we use the quantum 
mechanical expression for the thermodynamic energy 
of a harmonic oscillator 

vib ~- 4- h~dB2 exPkkhTj - 1 (A2) 

For values of ~RMS < 20°, observed here, (cos~) 
COS ~RMS. 

In the quasi-harmonic approximation, changes in the 
normal-mode frequencies arise solely from changes in 
the lattice constants. In the primary pyroelectric 

Table AI Contributions to the derivative of (cos ~) 

0 K 100K 200 K 300K 400K 

~B2 cm-I 97.28 94.86 

F ~ / k ~  - 1.83 

~RMS 2.69 4.46 
(cos ~) 0.999 0.997 

O~s2 cm -l -331 -322 
&l 

O~B: cm -1 -1162 -1146 
&2 

O~s2 cm -I -345 -336 
0~3 

89.75 83.91 76.82 

1.36 1.21 1.14 
5.73 7.10 8.70 
0.995 0.992 0.988 

-304 -282 -255 

-1111 -1068 -1013 

-317 -297 -272 
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response, the lattice constants and, therefore ~s:, are 
fixed. The partial derivative of (cos ~) with T at constant 
strain is thus 

\ OT ) - - - - s in~RMS ~-~B:t OT ]~ (A3) 

The partial derivative of (cos ~) with e at constant T is 

[ 
- -  - V 

\ O-~ei ] --sin~RMS 

From CLD we obtain wn. and its derivative with strain. 
B 2  . . z . and the derivative of ~ with T e~ib at constant 

strain are obtained directly from equation (A2). The 
derivative of ~ with e is evaluated numerically 
and ~RMS is calculated from equation (A1). Values 
for wB:, E ~ ,  fiRMS, (COS~) and O~s:/Oei are given in 
Table A 1. 
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